
CS166 Handout 02

Spring 2014 April 2, 2014

Problem Set Policies

The problem sets in CS166 will consist of a combination of design questions (where you'll devise
your own data structures), theory questions (where you'll prove results related to various data
structures), and implementation questions (where you'll implement data structures or run perfor-
mance trials). This handout is designed to give you a sense of what we're looking for in your solu-
tion sets.

Design Questions
Many questions on the problem set will ask you to design a data structure or algorithm that solves
a problem within a particular time bound. When writing up answers to these questions, we expect
you to structure your solution as follows:

• Begin with a short, high-level description of the idea behind the data structure. This
should be a two or three sentence paragraph describing the intuition behind the data struc-
ture. This will help the TAs get a better sense for how the data structure works.

• Describe the representation of the data structure. Give some details about how the data
structure is actually put together. You can do this with details such as “store two max
heaps called a and b,” or by describing a modification of an existing data structure, such as
“store a Fibonacci heap, but where each node stores a pointer into a balanced binary search
tree.”

• Describe any invariants or accounting schemes for the data structure. Some data
structures maintain strict invariants on their internal representation. For example, a binary
min-heap data structure ensures that each node always stores a value no larger than its
children and that the tree is a complete binary tree. If your data structure doesn't have any
invariants, you don't need to list anything. When we begin discussing amortized analysis,
you can also list any charging schemes or potential functions here.

• Describe each of the operations and give their runtime. For each operation, describe
how that operation is performed. We'd prefer explanations in plain English, but if you
think that pseudocode would be better, you can use that if you'd like. Just make sure that
your description is complete – there shouldn't be any ambiguities in how to perform each
operation. Then, explain why these operations are correct and justify why the data struc-
ture runs within the specified time bounds. You don't need to write a formal proof of cor-
rectness unless we specifically ask you to.

For example, consider the following problem:

Design a data structure that supports the following operations: insert(x), which in-
serts real number x into the data structure and runs in time O(log n), where n is the
number of elements in the data structure, and find-median(), which returns the
median of the data set if it is nonempty and runs in time O(1).

This is great problem to work through if you haven't seen it before. We have a sample solution on
the next page, so try this problem out before moving on. As a hint, try using heaps.

2 / 5

Here is a possible answer to this problem and a sample writeup:

Overview:

This data structure works by storing the data in a min-heap and a max-heap such that the two
middle values are at the top of each heap. Since only O(1) enqueues and dequeues are required
per insert and only O(1) find-mins are required per find-median, the data structure fits within the
time bounds.

Representation:

A max-heap left and a min-heap right.

Invariants:

There are two invariants: the ordering invariant, which says that all elements in left are less than
or equal to all elements in right, and the size invariant, which says that size(left) = size(right) if
there are an even number of elements, and otherwise the sizes of left and right differ by only one.
These guarantees mean that if there are an even number of elements in the data structure, the me-
dian is the average of max(left) and min(right), and otherwise the median is the max or min value
of whichever heap is larger.

Operations:

insert(x): First, determine which heap should contain x to maintain the ordering invariant. If
x < max(left), then add x to left; otherwise add it to right. This may break the size invariant. The
size invariant can only be violated if before adding the value, there were an odd number of en-
tries in the data structure (since if previously there were an even number of values, the heaps
would have to have the same size). Therefore, if after inserting the value there are an even num-
ber of elements, and if additionally and one heap has exactly two more elements than the other,
dequeue from that heap and enqueue the appropriate value into the other heap. This operation
preserves the ordering invariant, since the value removed is either the biggest value from left or
the smallest value from right. This operation requires only O(1) heap inserts or deletes, so it runs
in time O(log n).

find-median(): If there are an odd number of elements in the data structure, one of the two heaps
must have one more element than the other. If it's the maximum element of left, then that ele-
ment is greater than half the elements (namely, the other elements of left) and smaller than half
the elements (the elements in right), so it's the median. Therefore, return max(left). By similar
reasoning, if the odd element is in right, then min(right) is the median, so we can return it.

Otherwise, there are an even number of elements in the data structure. This means that the me-
dian element is the average of the two elements closest to the median point. Using reasoning
analogous to the odd case, we know that min(right) and max(left) are those two elements, so we
can return the average of min(right) and max(left).

Both of these operations only require calling min or max in right and left, and therefore run in
time O(1).

3 / 5

Theory Questions
Some of the questions on the problem set will be theory questions that ask you to prove various
mathematical results that are relevant for the analysis of data structures. For questions like these,
we expect that you'll write a formal mathematical proof of the result. However, for ease of grad-
ing, we'd like you to structure your answers as follows:

• Give a high-level description of your analysis or proof. If you're writing a proof, you
might give a two or three sentence description of the main insight behind the proof and
how you'll turn that insight into a proof. If you're asked to perform a calculation of some
sort, you can explain how you went about performing that calculation.

• Write the proof or calculation. This is where you'll either write a formal mathematical
proof or work through the steps in a calculation in detail.

As an example, consider the following problem:

Consider a binary heap B with n elements, where the elements of B are drawn
from a totally-ordered set. Give the best lower bound you can on the runtime of
any comparison-based algorithm for constructing a binary search tree from the el-
ements of B.

Here is one possible solution:

Proof Idea: The lower bound is Ω(n log n), and this is a tight bound. We'll prove this by first
showing that there's an O(n log n)-time, comparison-based algorithm for constructing a BST
from the elements of an n-element heap. Then, we'll show that any o(n log n)-time, comparison-
based algorithm for doing the conversion would make it possible to sort n elements in time
o(n log n) using only comparisons, which we know is impossible.

Proof: First, we'll show that there is an O(n log n)-time, comparison-based algorithm for con-
structing a BST out of the elements of B. Specifically, just iterate across the n elements of B and
insert each into a balanced binary search tree. This does O(n) insertions into a balanced binary
search tree, which will take time O(n log n). This algorithm is also comparison-based because bi-
nary search tree insertion is comparison-based.

Next, we'll show that no o(n log n)-time, comparison-based algorithm for constructing a BST
from a binary heap exists. Assume for the sake of contradiction that such an algorithm exists.
Then consider the following algorithm on an array of length n:

• Construct a binary heap B from the array elements in time O(n).

• Create a binary search tree T from B in time o(n log n).

• Do an inorder traversal of T and output the elements in the order visited in time O(n).

Note that the runtime of this algorithm is o(n log n), and each step is comparison-based. How-
ever, this algorithm will sort the elements of the array, because doing an inorder traversal over a
BST will list off the elements of that BST in sorted order. This is impossible, since there is no
o(n log n)-time, comparison-based sorting algorithm. Therefore, no o(n log n)-time, comparison-
based algorithm exists for converting a binary heap into a binary search tree. ■

4 / 5

Implementation Questions
Many of the problem sets will ask you to code up various data structures, possibly to gain the ex-
perience doing so, or possibly to ask you to get performance numbers on that data structure. When
coding up a data structure, you're welcome to do so in any language that you'd like, though we'll
typically offer starter files in Java for convenience.

In any implementation question, we'd like you to submit your code using our submitter script (de-
tails later on) in addition to the rest of your problem set. Some coding questions might also come
with auxiliary questions about the code you wrote (for example, asking you to justify your design
decisions), and you should submit those with the rest of your short answer questions rather than in
code.

Working in Pairs
You are welcome to work on the problem sets either individually or in pairs. Because we expect
that completing the problem sets individually will require more work than completing the problem
sets in pairs, if you submit the problem set individually, we will grade your problem set on a more
relaxed grading scale. Specifically, we'll grade the problem set as if it were out of fewer points
than normal.

If you work in a pair, you are required to submit a single joint assignment with your partner. We'll
then grade that single assignment and assign you and your partner the same overall score. It is a
violation of the Stanford Honor Code to work in a pair and submit assignments individually, since
the work you submit would not be your own work and you would be graded on a more lenient
scale. See the handout on the Honor Code for more details.

Submission Instructions
All written problems are due in hardcopy at the start of lecture. No electronic submissions for
written problems will be accepted without the prior approval of the course staff. As mentioned in
the course information handout, no late submissions will be accepted.

We ask that you submit your answers to programming questions separately from your written an-
swers. You can submit your code electronically by ssh-ing into one of the Stanford computer clus-
ters (for example, corn), cd-ing into the directory containing your solution files, then running

/usr/class/cs166/bin/submit

in the directory that you want to submit. You'll be prompted for your name, whether you worked
with a partner, and the problem set number. We'll test your code on the corn machines, so please
make sure that your code works correctly there before submitting.

5 / 5

Regrades
If you think we made an error when grading your problem set, you are welcome to submit it for a
regrade. Just attach a note telling us what you'd like to look at (this doesn't have to be very long; a
few sentences should be enough) and and the problem set to one of the course staff. All regrades
need to be received within one week of the problem set being returned; we won't consider any re-
grades after this point.

Please do not ask for regrades based on the severity of a deduction. We grade the problem sets
using a set of criteria and try to make our deductions as consistent as possible. Therefore, if you
ask for a regrade because you believe that we have deducted too many points for a particular error,
we will not accept your regrade; it wouldn't be fair to reduce a deduction we applied uniformly to
all problem sets.

It seems strange that I need to write this here, but please treat the course staff civilly and respect-
fully when asking for a regrade. The TAs and I sometimes make honest errors, and if that happens
we're happy to correct them. Although we know it's frustrating if your grade is lower than you ex-
pect it to be, we expect you to be considerate when asking for regrades. We reserve the right to
refuse regrade requests to students who are disrespectful when asking for a regrade.

	Design Questions
	Theory Questions
	Implementation Questions
	Working in Pairs
	Submission Instructions
	Regrades

